

GB6013

SAMPLING

DR. FARIZA KHALID

POPULATION

• The group of all items of interest to the researcher frequently very large; sometimes infinite E.g. All 180,000 primary school teachers in Malaysia.

SAMPLE

- A sample is a set of data drawn from the population. [Part of a population]
- Potentiall very large, but less than the population.
- E.g. a sample of 1000 primary school teachers in Malaysia

PARAMETER

- A descriptive measure of a population.
- The true percent of primary schools teachers in Malaysia

STATISTICS

- A descriptive measure of a sample.
- Of the 1000 primary teachers, 400 are teaching Special Education (40%)

SAMPLING - WHY?

- Sampling is an important characteristic of inferential statistics
- It is a process of going from the part to the whole (Ary et al., 2010)

SAMPLE

- the small group that is observed is called **sample**
- the larger group about which the generalization is made is called a **population**

POPULATION

SAMPLE

STATISTICS

PARAMETER

STATISTICAL INFERENCE

- Is a procedure by means of which you estimate parameter (characteristics of populations) from statistics (characteristics of samples)
- Such estimations are based on the law of probability and are best estimates rather than absolute facts.

STATISTICAL INFERENCE

- In making such inferences, a certain degree of error is involved.
- Inferential statistics can be used to test hypotheses about the population on the basis of observation of a sample drawn from the population.

STATISTICAL INFERENCE

 Because the purpose of drawing a sample from a population is to obtain information concerning the population, it is important that the individuals included in a sample constitute a representative cross-section of individuals in the population.

STEPS IN SAMPLING

- The first step in sampling is to identify the target population.
- In most research, we deal with an accessible population (the population of subjects accessible to the researcher for drawing a sample).
- It will be expensive and time-consuming to sample from the total population of the whole country for example, but we can draw a sample from one state.
- Then we can generalize the results to the whole population of the state, but not the whole country of course.

TYPE OF SAMPLING

PROBABILITY SAMPLING

 Every member of the population had a chance of "making it" into your sample

NON PROBABILITY SAMPLING

- Every member of the Nonprobability sampling
- Not every member of the population had a chance of "making it" into your sample

TYPE OF SAMPLING

PROBABILITY SAMPLING

SIMPLE RANDOM SAMPLING

STRATIFIED RANDOM
SAMPLING

SYSTEMATIC RANDOM SAMPLING CLUSTER AMLPING

SIMPLE RANDOM SAMPLING

 All members of the population have an equal and independent chance of being included in the random sample

SIMPLE RANDOM SAMPLING

STEPS:

- Define the population
- List all members of the population
- Select the sample by employing a procedure where sheer chance determines which members on the list are drawn for the sample.

SIMPLE RANDOM SAMPLING

STEPS:

- Define the population
- List all members of the population (enumerate)
- Select the sample by employing a procedure where sheer chance determines which members on the list are drawn for the sample.

STRATIFIED SAMPLING

- When the population consists of a number of subgroups. or strata that may differ in characteristics, it is often desirable to use a stratified random sampling
- the basis of stratification may be geographic or involve characteristics of the population such as age, gender, income, occupation, teaching level etc.

STRATIFIED SAMPLING

- When the population consists of a number of subgroups. or strata that may differ in characteristics, it is often desirable to use a stratified random sampling
- the basis of stratification may be geographic or involve characteristics of the population such as age, gender, income, occupation, teaching level etc.

STRATIFIED SAMPLING

 Advantage - it enables the researcher to also study the differences that might exist between various subgroups of a population

CLUSTER SAMPLING

- The unit chosen is not an individual but rather a group of individuals who are naturally together.
- e.e., a researcher might choose a number of schools randomly from a list of schools and then include all the students in the schools in the sample.

CLUSTER SAMPLING

- Clusters should be chosen randomly
- Once the cluster all the members of the cluster must be included in the sample.

SYSTEMATIC SAMPLING

• Involves drawing a sample by taking every 'Kth' case from a list of the population

SYSTEMATIC SAMPLING

STEPS

- Decide the sample (n)
- Divide the number of population (N) by sample (n) and determine the sampling interval (K) to apply to the list.
- Select the first member randomly from the first K members of the list and the select the Kth member of the population for the sample.
- e.g., 500/50=10 so Kth = every 10th of the sample from the list
- start the near top of the list so that the first case can be randomly selected from the first 10 cases and then select every tenth case thereafter.

SYSTEMATIC SAMPLING

- it differs from a random sampling in that the various choices are not independent.
- Once the first case is chosen, all subsequent cases to be included in the sample are automatically determined.
- Using an alphabetical list for example, would not give a representative sample of various national group because certain national groups end to cluster under certain letters.

NON PROBABILITY SAMPLING

- Involves non-random procedures for selecting the members of the sample.
- there is no assurance that every element in the population has a chance of being included
- the results cannot be generalized to the population

CONVENIENCE SAMPLING

- involves the use of available cases for study.
- e.g, volunteered respondents

PURPOSIVE SAIMPLING

- Samples are selected based on certain criteria to serve the purpose of the research
- also known as judgment, selective or subjective sampling - is a sampling technique in which researcher relies on his or her own judgment when choosing members of population to participate in the study

SNOVBALL SAMPLING

- selected based on the recommendation from the current subjects/respondents
- (or chain sampling, chain-referral sampling, referral sampling) is a nonprobability sampling technique where existing study subjects recruit future subjects from among their acquaintances.

DETERMINE A SAMPLE SIZE

 Sample size determination is the act of choosing the number of observations or replicates to include in a statistical sample. The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample.

DETERMINE A SAMPLE SIZE

 Sample size determination is the act of choosing the number of observations or replicates to include in a statistical sample. The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample.

DETERMINE A SAMPLE SIZE

- If your sample is too small, you may include a disproportionate number of individuals which are outliers and anomalies. These skew the results and you don't get a fair picture of the whole population.
- If the sample is too big, the whole study becomes complex, expensive and time-consuming to run, and although the results are more accurate, the benefits don't outweigh the costs.
- CALCULATE

SAMPLING ERROR

- When you only survey a small sample of the population, uncertainty creeps in to your statistics.
- If you can only survey a certain percentage of the true population, you can never be 100% sure that your statistics are a complete and accurate representation of the population.

SAMPLING ERROR

- This uncertainty is called sampling error and is usually measured by a confidence interval.
- For example, you might state that your results are at a 90% confidence level. That means if you were to repeat your survey over and over, 90% of the time your would get the same results.

DISCUSSION

• What are the differences in terms of sampling in quantitative and qualitative research?